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Precise A-optimum and partly optimum plans are constructed for a thermoanemometric 
experiment to determine components of the Reynolds stress tenaor. 

Turbulence characteristics are determined with a hot-wire anemometer by conducting a 
series of measurements with the wire located at different positions relative to the mean 
velocity vector and overheated by different amounts relative to the environment [1-4]. The 
dependence of the experimental results on a large number of factors which can be assigned 
with a finite accuracy affects the measurement error. The latter can thus be appreciable 
[!, 2, 4] in certain cases (shear flows with high-intensity pulsations, separation zones, 
etc.). In connection with this, it becomes important to look for the conditions that will 
ensure the assigned degree of accuracy. Below we examine problems of optimizing a thermo- 
anemometric experiment in flows with a relatively low (Tu ~ 0.2) and fairly high (Tu > 0.2) 
intensity of turbulence. 

With a relatively low level of pulsations, turbulence characteristics can be found on 
the basis of a theory whereby the components of the actual velocity vector are related as 
follows to the effective velocity (it is assumed that the wire is not sensitive to tangen- 
tial flows) [i, 2]: 

Q~ = (U + u) sin ~ + v cos ~ .  (1) 

Equation (i) is a linear regression with a controlled variable a i and unknown param- 
eters U + u, v. Determination of the velocity vector components reduces to measuring values 
of Qi at different positions of the transducer (i = I, ..., N) and subsequent solution of a 
system of N regression equations (i). The approximate solution of such a system has the 
form [5 ] 

Th = ~ ~ (M-1)kjo~fjiQ~ (k = 1 . . . . .  m). (2 ) 

In  t h e  c a se  o f  i n d e p e n d e n t  measurement  o f  a l l  Qi ,  t h e  d i s p e r s i o n s  o f  t h e  s o u g h t  p a r a m e t e r s  
which determine their errors are the diagonal elements of the dispersion matrix D = M -I. 
They are equal to the following (N = m = 2, o: = 02 = 0): 

Dli = ~ c~ ~i +4- cos z a~ D~ = ~ sin2 ~ + sin2 ~ 
sin2 (~i -- ~2) ' - sin2 (~i -- ~2) (3) 

Equations (3) allow us to find the conditions for minimum error in measuring the individual 
components of the velocity vector. To determine the entire group of sought parameters with 
the required degree of accuracy, it is best to optimize in accordance with the A criterion, 
i.e., it is best to minimize Sp D [5]. In this case, the angles ai should satisfy the con- 

dition I~i--~2]-- 
2 

Mean-square values of the effective velocity, rather than actual values of the latter, 
are generally determined in thermoanemometric measurements. In this case, the method of 
"three rotations" allows us to find the second moments of the velocity field. The equa- 

*The A-optimum plan corresponds to the placement of a cross-shaped transducer in the uv 
plane. 
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TABLE i. Spectra of Optimum Plans 
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TABLE 3. Nonoptimum Plans 
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Fig. i. Coordinate system. 

tion connecting the mean square value of Qi with the Reynolds stress components has the 
form 

< (Q~ - -  < Qi > )2 > = < u~ > s i n 2 o h +  < v ~ > cos2a~+ ( uv > s in2a i .  (4 )  

The diagonal elements of the dispersion matrix (N = m = 3) are expressed through the follow- 
ing relations: 

O~, = (~z [cos 2 cq cos ~ % sin 2 (cq - -  a.~) + cos ~ ~1 cos 2 =3 sin ~ (at  - -  ~3) + (5 )  

+ c o s  z e~ cos 2 c~3 sin z (ez - -  (~3)l/[sin ~" (e ,  - -  ~ )  sin 2 (a i  - -  ~3) sin z (~-~ - -  ~3)1, 
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D22= o z [sin z ~ sin z % sin z (a~ - -  % ) +  sin z a I sin z aa sin z (% - -  aa) -~ ( 6 )  

+ sin~ g2 sin ~ ~a sin2 (% - -  %)]/[sin 2 (% - -  %) sin = (% - -  %) sin 2 (% - -  ~a)], 

Da a = oz [sin z (% __ aa ) sin z (a~ ~ aa) -~- sin z (a~ -- %) sin2 (~, § % ) §  (7) 

+ sinz (%--~2) sin 2 (~,§ z (~,--~a) sinZ ( ~ - - % )  sin z (%--%)1. 

For regression (4), the spectrum of the A-optimum plan consists of the points 

3 3 

(al is an arbitrary point). Here, the dispersions D11 = D22 and Dsa are, respectively, 

equal to o 2 and 2 8 --o z, , while SpD=--o 2 . 
3 3 

The results shown pertain to optimization of the thermoanemometric experiment as a 
whole. In a practical sense, it is also of interest to improve the accuracy of the deter- 
mination of the individual turbulence characteristics < u = >, < v 2 >, etc. Table 1 shows 
spectra of the corresponding optimum plans and the measurement errors of single-wire ("three 
rotations" method) and two-wire (with angles a: and aa relative to the mean velocity vector) 
transducers. 

With high-intensity pulsations, the systematic error associated with linearization of 
the heat balance equation of the wire increases markedly. This limits the range of values 
of Tu (Tu ~ 0.2) in which Eqs. (i) and (4) can be used. Another approach based on measure- 
ment of the mean square of the effective velocity [6, 7] is used to determine turbulence 
characteristics within the interval Tu > 0.2. In a spherical coordinate system (Fig. i), 
the corresponding system of regression equations has the form* 

(8) Q~=f t i  < (U§  2 > + f ~  < ~ > +fa~ < uv > +&~ < w 2 > § f~  <um > § &~ < vm >, 
where 

ft~= 1-k(k 2 - -  1) sin20~ cos2 %; f2~= lq-( k2 - -  1) sin=Oi sinZcpf; 

f3~=(k z - -  1) sin z Ot sin 2%; f ~ =  1 + ( k  2 - -  1) cos 2 0, ;  

fs~=(k 2 - -  1) sin 20,  cos %; f6 f=(k  2 - -  1) sin 20~ sin qq. 

In this case, optimizing the experiment reduces to finding the minimum of the vector func- 
tional of the dispersion matrix, the specific form of which depends on the formulation of 
the problem being studied. Table 2 shows spectra of optimum plans (m = 5, < vw > = 0 and 
m = 6, < vw > ~= O; N = m) obtained as a result of approximate calculations. These calcu- 
lations showed that the errors associated with measurement of the angles can be neglected, 
since they are very small and only slightly affect the value of Dkk. For the sake of com- 
parison, Table 3 shows data on measurement errors at random positions of the transducer. 
It is apparent that optimizing the experiment significantly improves the accuracy of the 
measurements. 

NOTATION 

Tu, intensity of turbulence; Qi, measured value in the i-th test (effective velocity 
or mean value of its square); U, mean velocity; u, v, w, components of the eddy velocity; 
ai, angle between the direction of a wire located in the plane uv and the mean velocity 
vector; N, number of measurements; m, number of unknown parameters; M, Fisher data matrix; 
D, dispersion matrix; Tk, linear estimate of the k-th parameter; fji, j-th component of the 
vector function of the factors a i or Oi, ~i; oi, error of measurement of Qi; < >, average 
over time; D1x, ..., D~, respectively, the dispersions of the quantities < (U + u) 2 >, 
< V 2 >, < UV >, < W 2 >, < UW >, < ~ >~ 
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CLOSED EQUATION FOR THE STRUCTURE FUNCTION 

OF AN ISOTROPIC TURBULENT VELOCITY FIELD 

V. A. Sosinovich UDC 532.517.4 

A closed equation is derived for the structure function of an isotropic turbulent 
velocity field in an incompressible fluid. The equation for the characteristic 
function [i] is used as the initial equation. 

A closed equation was obtained in [i] for the characteristic function ~ of the prob- 
ability distribution of the differences in velocities and temperatures at two points in an 
isotropic turbulent flow of an incompressible fluid. Here, we use this equation as the 
initial equation to derive an equation for the structure function, which is defined as 
follows: 

D(r, t ) =  <AVz(r, 02>.  (1) 

The time-dependent argument of the structure functions will not be indicated in subsequent 
discussions. 

Using the equation for % we can also obtain an equation for the structure function of 
the temperature field H(r, t). This equation will be derived in the present article. In 
making the transition from the equation for ~ to the equations for D and H, there again 
arises the problem of closure. To obtain closed equations for D and H, we need to make 
certain assumptions regarding the form of the characteristic function ~ We will choose for 
the form of ~ the product of the Gaussian characteristic function and an expression account- 
ing for the deviation of the combined probability distributions of the velocity and temper- 
ature differences from the normal distribution. This expression will contain only those 
moments of the probability distribution which have an important physical significance: i) 
the double-point third-order structural tensor Dijl(r ) describing the transfer of energy 
between different-scale pulsations of the turbulent velocity field, 

Dut (r) = ( AVi (r) AVj (r) kVz (r) > ; (2) 

2) a mixed third-order moment defining turbulent mixing of the temperature field 

Dirt(r)  = (AV~(OATZ(r) >. (3) 

Thus, the assumption made with regard to the form of ~ consists of the following: 

~r,~(O, n ) =  expr(O, n) [ J - -  iT (O, n)], (4) 

where 

1 Di  j (r) 0i0 j - -  1 H (r) N2; ( 5 )  F(O, ~ ) -  2 -2- 
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